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Note 

Hyperbolic Two-Pressure Models for 
Two- Phase Flow Revisited 

This paper presents corrections to a previous paper (J. Comput. Phys. 53 (1984j, 124) on 
stability analyses of one-pressure models for two-phase flow. It also presents some extensions 
and generalizations of previous work on two-pressure models. The extensions allow both the 
slopes to the interfaces and the rates of mass transfer through the interfaces to be non- 
negligible. These enlargements of the domain of applicability of the two-pressure models 
introduce extra derivative terms into the models. These extra derivative terms do not change 
the basic character of the model. The two-pressure models remain stable in the sense of 
van Neumann ax. in state space with the more complete modelling of the interface. C! 1988 

Academic Press, Inc. 

1. INTRODUCTION, BACKGROUND, AND ERRATA 

Reference [l] introduced the two-pressure models to this journal and showed 
that they were stable in the sense of von Neumann a.c. in state space; also it 
reviewed some results of Wendroff [2] on the instability of the one-pressure 
models. Wendroff [3] recently pointed out an error in that review. 

In the equaton for the mixture sound speed, c,,, (on the bottom of p. 139 in 
Ref. [l]), the denominator in that expression was incorrectly printed as 
p, cf + prcf. Here P,~ for II = 1, 2 is the averaged value of the mass density of phase 
n and c,, is the sound speed of phase IZ for n = 1, 2. 

The correct expression for the denominator is ~,p,c~+a,p~c:, where LX,, is the 
volume fraction of phase n. 

In summary, the correct equation for the mixture sound speed in the one- 
pressure models is 

where pm is the mixture density given by p,,, = R, p1 + cc,p2. 

Shortly after reference [1] appeared the review article on two-phase flow by 
Stewart and Wendroff [4] appeared. There seemed to be a discrepancy between the 
conditions for real roots of the characteristic polynomial for the single-pressure 
model. However, with this correction in the equation for the mixture sound speed, 
the R’-inequality on page 142 of Ref. [l] is equivalent to the inequalities on page 
407 of Stewart and Wendroff [4]; these inequalities give the constraints for the 

49% 
0021-9991~88 $3.00 
Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction m any form reserved. 



HYPERBOLIC TWO-PHASE FLOW MODELS 499 

characteristic roots to be real. Thus, there is no disagreement between the two 
papers. 

There are two other errors in Ref. [l]: 

* In Eq. (2.78) on page 137 the third “p,,” in that equation should be replaced 
with a “p,,“: 

0 On page 140 in the equation for a, the third “by.” should be replaced with 
;i ‘7.” 

in reference [ 11 the two-pressure models, 5E2P and 8E2P, were analyzed for 
stability in the sense of von Neumann under certain simplifying assumptions: 

CJ separated, stratified flow between plates at )’ = 0 and J’ = H with Phase i 
in the region 0 -C J’ < Y and Phase 2 in the region Y; j’ < N; 

(ii) interface slope small, i.e., I? Yi13.y / 2 0; 
(iii) negligible rates of mass transfer across the interface, i.e., FEZ 2 0. 

This brief paper gives a quick sketch of the relaxation of some of these 
constraints: 

On (iii) the extension allows any finite value of liz. 

On (ii j the extension allows any finite value of 3 I~~?x. 
On (i) we have done some‘preliminary work on the extensions to multilayered 

flow and bubbly flow which the interested reader may find in Ref. [5]; however. we 
shall not discuss these latter extensions in this brief report. 

Because the combination of extensions (ii) and (iii) introduces new derivative 
terms into the models it is not immediately obvious that the two-pressures mod& 
would remain stable in the sense of von Neumann a.e. in state space. However. as 
we shall show. they do. 

2. NOTATION AND NOMENCLATURE 

We follow the same notation and nomenclature as Ref. [I] and therefore only 
briefly review it. The planar, two-dimensional conservation (or balance) laws for a 
single phase in the spatial (Eulerian) reference frame are 

where 

Df = Sf!iit + dufi’c?x + Suf.:Sy 

f = fp, pu. pt’> pQT 

F=(O,p,O, upIT 
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G = (0, 0, P, UP)’ 
s = (SP, sp”, Sf’, YE)=. 

Here (x, y) are spatial coordinates, t is the temporal coordinate, (u, v) is the fluid 
velocity vector, p is the mass density, E is the specific total energy, and S is the 
vector of source functions. 

We consider the case of planar. stratified flow between plates at J: = 0 and 1’ = H. 
Phase 1 is in the region 0 <J’ < I’ and Phase 2 is in the region Y <JJ < H. 
Y= Y(x, t) is the interface between Phase 1 and Phase 2. 

The volume fraction of phase n is denoted by LX,,. Under the assumption that 
there are no detachments, the conservtion of volume is expressed by 

and we also have the relation 

Y=cr,H. 

Bourzdar~~ aalues. The value of f at y = 0 is denoted by jb and at I;= H is 
denoted by fH. The value off on the n-side of the interface is denoted by f,. 

Point functions. Before averaging we have the point functions, j,l, defined by 

.fAx, 2’, 1) = 

f(x, ~9, t) if (x, ~1, t) is in phase n 
o if not. 

Averaging operators. The averaging operators are defined by 

A,(. ) = 1‘:’ (. 1 W(~,,H). 

Azjerage-value functions. The average-value functions are denoted by fn and 
defined by 

f,, = AnUn). 

Interfacial mass transfer. The mass/area/second flowing through the interface 
will be denoted by riz. In Ref. [ 1 ] the equations are only correct for riz z 0. 

Velocity of the interface. It appears that some discussions about interface con- 
ditions and interface mass transfer have been obscured because the phrase “velocity 
of the interface” is somewhat ambiguous; “tangential velocity of the interface” in 
particular, seems to be open to many different definitions. Here we take the velocity 
in the direction normal to the interface in the spatial reference frame; we refer to 
this as the normal Eulerian velocity of the interface. 

It can be shown [S] that the normal Eulerian velocity of the interface is given by 

n = (-iiY/dx, 1)(8Y/St)/M’, 
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where 

Note that 

where I( ‘11 is the usual, Euclidean norm. 
If an interface with normal Eulerian velocity n is traveling through a field 

governed by the equation 

(where S has no derivative terms) then it can be shown (e.g., see [6]) that the jump 
in the field across the interface satisfies the general jump relation 

II n II2 IIll = II(f, s)l . n, 

where [f] is the jump infacross the interface, i.e., [.f] =fz -$,. 

Ma.u Transfer Relutions across the Interface 

Applying the general jump relation to the conservation of mass equation yields 

/I n II2 [IPI = I(Pu, ~11 . n. 

Let Y,, be the fluid velocity on the lz-side of the interface measured in the direction of 
the normal Eulerian velocity of the interface, i.e.> 

In terms of v,~ we (see [j] j can derive the following expression for the conservation 
of the mass passing through the interface 

Observe that from the last two equations the equation for the transverse velocity of 
phase n at the interface follows: 

Note that when viz = 0 this reduces to Stewart and Wendroffs [4] interface 
conditions (2.1.7) and (2.1.8). 
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Other Jump Relations at the Interface That Follow from the General Jump Relation 

fhiIu1 = CPI n,!ll n II 

f%~l = c PI rlzill n II 

fNv1 = [PI 

ril[v-J= -[v] 

rn[kq = [VP] 

o=lel+PCYl, 

where e is the specific internal energy, V is the specific volume and 

3. GENERALIZATIONS OF THE INTERFACE CONDITIONS 

In Ref. [t] we showed that the averaged equations have the form 

D,Jcc,,f,) + %a,zF,,)/?.u - P,da,z/dx + d,(G,i)/H= S,, 

where $I2 is the generalized source term given by 

%, = C%, - B,,(f). 

When nonnegligible mass transfer and nonnegligible interface slope are included 
the B,, becomes 

and 

B,(f)= - [fouo+tid4~,,‘~,]/H 

B,(f) = + [f,rH + kMLf,j~,]/H. 

Note that in the expressions for B,, in Ref. [I] no M appears because when 
2 Y/&X is small then M % 1. 

Observe that since 

the inclusion of the tiM term introduces a ~?a,/Ck term which could possibly change 
the character of the equations. Therefore, we investigate the effect this has on the 
von Neumann stability of the two-pressure models. 

Note that if d~~/~?x has large magnitude then 
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where 

for t1= 1,2. 
Recall from Ref. [ 11 that the analysis of the 5E2P model reduced to studying the 

von Neumann stability of a system 

2U/?r + A iXJ,i;l.~ = 0, 

where 

A= 

0 0 1 1 0 0 

c; c; - - 11; 11; zu, zu, 0 0 
0 0 0 0 0 0 

0 0 0 0 CT-11 CT-11 

0 0 0 0 0 0 

0 z41, 
0 ‘42j 

1 A,, 
2 1 2u, A,, 

0 i 

with 

and 

‘4,,=O=A,, 

Azj= -P, 

A,,= +P, 

P,z=P,,-a-cf,& 

when the tizM term is neglected. 
When the tid4 term is not neglected and &x,,:!?x has large magnitude then 

Note that the values of A,,, 1 < id 4, have no effect on the eigenvalues of A. 
Therefore, as in Ref. [ 11: we have five real eigenvalues u,, + c, and 6. The analysis 
for the eigenvectors follows the same pattern with very similar results as in [ 17, 
The 5E2P analysis extends readily to the 8E2P model just as in [I]. 

Thus, we arrive at the conclusion: the two-pressure models for two-phase flow 
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continue to be stable in the sense of von Neumann a.e. in state space when the 
effects of nonnegligible mass transfer through the interface and nonnegligible slope 
to the interface are included. 
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